Signal Processing for Machine Learning

Program

Contents 

Part 1:     Signal Processing Methods and Applications

References: [1], [2], [3], [4], [5]

Part 2:     Graph Signal Processing and Learning

References:   [1], [6], [7], [8], [9], [10]

Part 3:     Distributed Optimization and Learning

References:  [1], [5], [11], [12], [13]


Textbooks and resources:

[1]  Slides, notes, and codes

[2] Vetterli, Martin, Jelena Kovačević, and Vivek K. Goyal. Foundations of signal processing. Cambridge University Press, 2014.

[3]  S. Foucart and R. Holger, A mathematical introduction to compressive sensing, Basel: Birkhäuser, 2013.

[4]  E.J. Candès et al., Exact matrix completion via convex optimization, Foundations of Computational mathematics, 9(6), 717-772, 2009.

[5]  S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004;

[6] M.E.J. Newman, Networks: An Introduction, Oxford, UK: Oxford University Press.

[7] Ortega, A., Frossard, P., Kovačević, J., Moura, J. M., & Vandergheynst, P. (2018). Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5), 808-828. 

[8] P. Di Lorenzo, S. Barbarossa, and P. Banelli, Sampling and Recovery of Graph Signals, Cooperative and Graph Signal Processing, P. Djuric and C. Richard Eds., Elsevier, 2018.

[9] Isufi, E., Gama, F., Shuman, D. I., & Segarra, S. (2022). Graph filters for signal processing and machine learning on graphs. arXiv preprint arXiv:2211.08854, 2022. 

[10] Ruiz, L., Gama, F., & Ribeiro, A. (2021). Graph neural networks: Architectures, stability, and transferability. Proceedings of the IEEE, 109(5), 660-682. 

[11] Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1), 215-233. 

[12] Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE signal processing magazine, 37(3), 50-60. 

[13]  S. Boyd et al., Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

CVX software for convex optimization.